23 research outputs found

    Detection of gravitational waves from black holes: Is there a window for alternative theories?

    Full text link
    Recently LIGO and VIRGO collaborations reported about observation of gravitational-wave signal corresponding to the inspiral and merger of two black holes, resulting into formation of the final black hole. It was shown that the observations are consistent with the Einstein theory of gravity with high accuracy limited mainly by the statistical error. Angular momentum and mass of the final black hole were determined with rather large allowance of tens of percents. Here we shall show that this indeterminacy in the range of the black-hole parameters allows for some not negligible deformations of the Kerr spacetime leading to the same frequencies of black-hole ringing. This means that at the current precision of the experiment there remain some possibilities for alternative theories of gravity.Comment: 5 pages, 1 figur

    Quasinormal modes of the charged black hole in Gauss-Bonnet gravity

    Full text link
    The d-dimensional string generated gravity models lead to Einstein-Maxwell equations with quadratic order correction term called the Gauss-Bonnet term. We calculate the quasinormal modes for the d-dimensional charged black hole in the framework of this model. The quasinormal spectrum essentially depends upon the Gauss-Bonnet coupling parameter α\alpha which is related to the string scale, and is totally different from that for black holes derived from Einstein action. In particular, at large α\alpha the quasinormal modes are proportional to α\alpha, while as α\alpha goes to zero the qusinormal modes approach their Schwarzschild values. In contrary to Einstein theory black hole behavior, the damping rate of the charged GB black hole as a function of charge does not contain a chracteristic maximum, but instead the monotonic falling down is observed. In addition, there have been obtained an asymptotic formula for large multipole numbers.Comment: 16 pages, 4 figures, 3 tables; misprints correcte

    Quasinormal frequencies of Schwarzschild black holes in anti-de Sitter spacetimes: A complete study on the asymptotic behavior

    Full text link
    We present a thorough analysis for the quasinormal (QN) behavior, associated with the decay of scalar, electromagnetic and gravitational perturbations, of Schwarzschild-anti-de Sitter black holes. As it is known the anti-de Sitter (AdS) QN spectrum crucially depends on the relative size of the black hole to the AdS radius. There are three different types of behavior depending on whether the black hole is large, intermediate, or small. The results of previous works, concerning lower overtones for large black holes, are completed here by obtaining higher overtones for all the three black hole regimes. There are two major conclusions that one can draw from this work: First, asymptotically for high overtones, all the modes are evenly spaced, and this holds for all three types of regime, large, intermediate and small black holes, independently of l, where l is the quantum number characterizing the angular distribution; Second, the spacing between modes is apparently universal, in that it does not depend on the field, i.e., scalar, electromagnetic and gravitational QN modes all have the same spacing for high overtones. We are also able to prove why scalar and gravitational perturbations are isospectral, asymptotically for high overtones, by introducing appropriate superpartner potentials.Comment: 22 page
    corecore